Geometry Regents Lomac 2015-2016		Date <u>11/18</u>	due <u>11/19</u>	Congruent Triangles AAS, HL	4.5R		
Name	Per						
LO:	I can prove that AAS and HL are shortcuts for proving that two triangles are congruent and can use them to determine whether or not two triangles are congruent and write a proof.						
DO NOW On the back of this packet							

DO NOW On the back of this packet

cies, dry erase

markers,

eraser, compass, straightedg е

Congruence: A sequence of rigid transformations. AAS __(1) transparen

Two shapes are congruent if there is a sequence of transformations (1 or more) that map one shape to the other. Determine a sequence of transformations that maps \triangle LKJ to \triangle ABC. Write a description and justification for each step in the sequence of transformations.

1

Is AAS enough to prove/guarantee 2 triangles are congruent?

\Box (2) Congruence: A sequence of rigid transformations. SSA

Two shapes are congruent if there is a sequence of transformations (1 or more) that map one shape to the other. Determine a sequence of transformations that maps \triangle MNO to \triangle ABC. Write a description and justification for each step in the sequence of transformations.

Is SSA enough to prove/guarantee 2 triangles are congruent?

The shaded and large triangles are / are not congruent?

Angle 1 is an	angle
Angle 2 is an	angle

The shaded and large triangles are / are not congruent?

Angle 1 is a _____ angle

Angle 2 is a _____ angle

The shaded and large triangles are / are not congruent?

Because SSA is really a ______ a _____ and a _____

so we don't call it SSA, but instead we call it HL≅.

В

A'

A'

С

Is HL enough to prove/guarantee 2 triangles are congruent? _____

(3) What about SSA for right triangles?

(4) Two shapes are congruent if there is a sequence of transformations (1 or more) that map one shape to the other. Determine a sequence of transformations that maps $\triangle XVW$ to $\triangle ABC$. Write a description and justification for each step in the sequence of transformations.

(6) Exit Ticket

ON THE LAST PAGE

(7) Homework

Determine whether the triangles are congruent by SAS, ASA, SSS, AAS, or HL congruence.

(7) cont.

Homework

Congruence: A sequence of transformations (ASA #1 remix)

(10) Construct right triangle MOP with right angle O.

(11) Bisect angle O in the triangle you constructed for problem number 10. How many degrees is each half of the bisected angle?

(12) Construct equilateral triangle WET.

(13) Bisect angle T in the triangle you constructed for problem number 12. How many degrees is each half of the bisected angle?

\Box (7) Homework

(14) Use the work that you did in problems 10 through 13 to construct an angle that measures 75°..

				9
Exit Ticket	Name	Date	Per	4.5R

(1) The LO (Learning Outcomes) are written below your name on the front of this packet. Demonstrate your achievement of these outcomes by doing the following:

No exit ticket. Proof Progress only

10 DO NOW Name

Date _____ Per____

(1) PROOF PROGRESS B:

Write a proof for #1 or #2.

Attach this to the top of your "Proof Progress" packet with a paper clip.

